# GPSC Water Efficiency Management Programs 2024





# Content: GPSC Water Efficiency Management Programs 2024

| No. | Content                                                                          | Page |
|-----|----------------------------------------------------------------------------------|------|
| 1.  | Introduction                                                                     | 3-4  |
| 2.  | Water use assessment to identify opportunities for water efficiency improvements | 5-9  |
| 3.  | Actions to reduce water consumption                                              | 10   |
| 4.  | Actions to improve wastewater quality                                            | 11   |
| 5.  | Establishment of targets to reduce water use                                     | 12   |
| 6.  | Application of water recycling                                                   | 13   |
| 7.  | Awareness training provided to employees on water efficiency management programs | 14   |



### Introduction

Water is essential to develop and maintain successful and healthy economies and for human health and well-being, through the GPSC Water Efficiency Management Program, various processes for water management are conducted, including identification of opportunities to continually improve water efficiency performance, water use review, water use indicators measurement and monitor, and reduction or reuse of water in operations, etc.


In addition, GPSC provides training on the Water Efficiency Management Program to all employee and engagement with external stakeholder to raise awareness on water as the essential for all activities and life.







### Introduction



In order to ensure the constructive water management, GPSC has established governance structure and system from the top executives to operation level as well as well defined water strategy, target, and action plan which not only covers the use of water in all activities but also expands to the opportunities of water business to secure company resilience in the future term as well as appoints the functional team lead to responsible in the task and defines the reporting line to follow up each progression in timely basis.

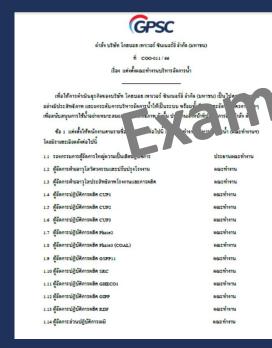
With focusing on water effiency improvement, the processes including plant water mess balancing, effiency and loss identification, and water conservation program to 3Rs (reduce, reuse, recycle) are implemented to maximize the water effiency.



GPSC systematically monitors the use of water inside the organization. It is a process to identify activities and functions which have significant use of water and impact on water quality. The activities and functions will be considered as potential for water efficiency improvement.

| INPUT                                               | ACTIVITY                                                                            | WASTEWATER<br>GENERATED                                 | ASSESSMENT APPROACH                                                                                                                                                                                                                           |
|-----------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water from outside suppliers                        | <ul><li>Cooling process</li><li>Steam production</li></ul>                          | Sea water through a     "Once through                   | <ul> <li>Seawater temperature checking in the cooling<br/>system prior to releasing this back into the sea.</li> <li>The GPSC group has installed a seawater</li> </ul>                                                                       |
| Water from natural<br>sources, such as sea<br>water | process  Mineral water production system  Condensate water quality improvement unit | cooling system"  • Wastewater from production processes | temperature measurement device, which will work continuously to constantly display this value in the control room of the power plant. An aquatic breeding project in collaboration with fishery groups and local scholars was also conducted. |
| Tap water                                           | Office services                                                                     | Graywater and blackwater                                | <ul> <li>Preparation of a record regarding the water use<br/>and wastewater treatment, by first party on a<br/>monthly basis.</li> </ul>                                                                                                      |




#### Water Management within GPSC

GPSC conducts site-level water use assessments under its ISO 14001-certified EMS to identify opportunities for improving water efficiency. These assessments have led to 3Rs initiatives such as condensate reuse, boiler wastewater recovery, and cooling water recycling. A key project resulting from this assessment is the **cooling return line installation at CUP2**, reducing service water consumption by **157,680** m³/year.

To ensure effective implementation and governance, GPSC has established the **Water Management Working Team**, responsible for setting targets, approving action plans, monitoring progress, and coordinating with internal and external stakeholders.

Additionally, GPSC participates in PTT Group's strategic water planning, including the development of the **Self-Rely / Water Secure Portion indicator**, which promotes long-term water efficiency and reduced dependency on public water sources.

Appointment of the GPSC's Water Management Working Team



|     | 1.15 ผู้จัดการส่วนวิศวกรรมเครื่องกล                                        | คณะทำงาน            |  |  |  |
|-----|----------------------------------------------------------------------------|---------------------|--|--|--|
|     | ь ผู้จัดการล่วนคุณภาพ ความมั่นคงปลอดภัย อาชิวอนามัยและสิ่งแวดล้อม (МТР)    | คณะทำงาน            |  |  |  |
|     | ผู้จัดกา รุตุณภาพลายงานปฏิบัติการ                                          | คณะทำงาน            |  |  |  |
|     | 1 จัดง                                                                     | คณะทำงาน            |  |  |  |
|     | <ol> <li>ลิการ</li> <li>สโรงไฟฟ้าและรางแผนการผลิต</li> </ol>               | คณะทำงาน            |  |  |  |
| Y   | 1.20 หนึ่งงานบริหารคุณภาพสายงานปฏิบัติการ                                  | เอลานุการ           |  |  |  |
|     | €ือ 2 ให้คณะทำงานๆ มิบทบาทหน้าที่และความรับผิดขอบ ดังนั้                   |                     |  |  |  |
|     | 2.1 คำหนดแนวทาง และเป้าหมายแผนการดำเนินงานเรื่องน้ำ                        |                     |  |  |  |
|     | 2.2 จัดประชุมคณะทำงานฯ เพื่อชี้แจงวัตถุประสงค์และแนวทางการทำงาน            |                     |  |  |  |
|     | 2.3 คำกับคูแลให้ความเห็นขอบแผนงาน และเบ้าหมายการคำเนินงาน คลอดจนดีดคา      | บคารดำเนินงานและให้ |  |  |  |
|     | การลนับสนุนการดำเนินงาน ให้เป็นไปตามแผน และเป้าหมาอที่กำหนดไว้             | ankana kataka       |  |  |  |
|     | 2.4 คำกับคูแลการบริหารน้ำ ในภาพรวมให้เป็นไปอย่างมีประสิทธิภาพ และเกิดประโ  |                     |  |  |  |
|     | 2.5 ประสานงานกับหน่วยงานทั้งภายในและภายนอกองค์กร เพื่อให้การบริหารน้ำสม    | •                   |  |  |  |
|     | 2.6. รายงานผลการปลิบัติงานให้ Covertion Management Committee (OMC) พราบ เร | namatsuriustauna lu |  |  |  |
| •   | ทั้งนี้ ให้มีพลบังคับใช้ตั้งแต่ วันที่ 28 เมษายน พ.ศ. 2566 เป็นต้นไป       |                     |  |  |  |
| Pow | vers and Duties                                                            |                     |  |  |  |
|     | ลั่ง ณ วันที่ 28 เมษายน                                                    | select waren        |  |  |  |
| 1.  | Setup the guidelines and goals for the action                              |                     |  |  |  |
|     | plan on water management                                                   | 2                   |  |  |  |
| 2.  | Govern/ approve plans and targe                                            | et as well as       |  |  |  |
|     | following up on operations and r                                           | providing           |  |  |  |
|     | support to operations, according                                           | to the              |  |  |  |

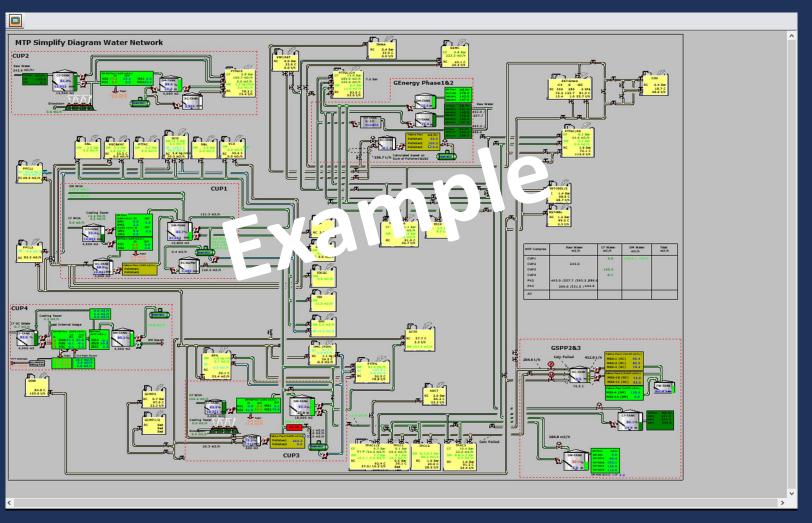
Coordinate with relevant parties both inside and outside the company in order to complete all dimension of water management



Example of water use assessment by plants

Water use assessment to identif opportunities for water efficienc improvements by plant

Example of water efficiency report (water consumption per MWh production)


| GPSC Water Summary                       |          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|------------------------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Power Plant Water Index                  |          | Oct-23    | Nov-23    | Dec-23    | Jan-24    | Feb-24    | Mar-24    | Apr-24    | May-24    | Jun-24    | Jul-24    | Aug-24    | Sep-24    | Oct-24    | Nov-24    | Dec-24    |
| CUP134 Water Consumption                 | m3       | 215,933   | 245,024   | 209,833   | 289,595   | 207,402   | 202,927   | 128,668   | 146,573   | 196,800   | 202,814   | 123,802   | 184,318   | 197,229   | 228,675   | 228,227   |
| CUP134 Production                        | MWheq    | 237,975   | 232,099   | 249,679   | 253,185   | 240,461   | 231,604   | 267,344   | 266,488   | 279,571   | 294,646   | 285,271   | 271,119   | 240,520   | 241,639   | 260,106   |
| CUP134 Water Index                       | m3/MWheq | 0.9074    | 1.0557    | 0.8404    | 1.1438    | 0.8625    | 0.8762    | 0.4813    | 0.5500    | 0.7039    | 0.6883    | 0.4340    | 0.6798    | 0.8200    | 0.9463    | 0.8774    |
| CUP2 Water Consumption                   | m3       | 126,582   | 107,964   | 107,711   | 106,031   | 101,473   | 113,679   | 110,945   | 110,646   | 102,499   | 103,007   | 101,749   | 91,551    | 99,533    | 107,173   | 117,302   |
| CUP2 Production                          | MWheq    | 82,375    | 77,211    | 80,012    | 73,274    | 61,558    | 74,640    | 75,582    | 78,666    | 76,995    | 77,418    | 80,276    | 74,668    | 81,151    | 78,487    | 80,117    |
| CUP2 Water Index                         | m3/MWheq | 1.5367    | 1.3983    | 1.3462    | 1.4470    | 1.6484    | 1.5230    | 1.4679    | 1.4065    | 1.3312    | 1.3305    | 1.2675    | 1.2261    | 1.2265    | 1.3655    | 1.4641    |
| Ph2 Water Consumption                    | m3       | 74,759    | 52,256    | 61,397    | 55,913    | 105,806   | 109,676   | 84,850    | 97,200    | 78,942    | 58,321    | 128,020   | 121,538   | 157,587   | 225,694   | 227,835   |
| Ph2 Production                           | MWheq    | 184,315   | 142,259   | 168,195   | 162,669   | 150,355   | 149,189   | 170,308   | 168,      | 179       | 183,918   | 186,535   | 178,760   | 175,895   | 159,533   | 184,055   |
| Ph2 Water Index                          | m3/MWheq | 0.4056    | 0.3673    | 0.3650    | 0.3437    | 0.7037    | 0.7351    | 0.4982    | 0.57      | 86        | 0.3171    | 0.6863    | 0.6799    | 0.8959    | 1.4147    | 1.2379    |
| Ph3 Water Consumption                    | m3       | 333,488   | 318,323   | 324,348   | 222,739   | 227,274   | 257,199   | 233,500   | 230,9     | 2 :72     | 4,480     | 184,466   | 247,468   | 252,115   | 241,493   | 208,879   |
| Ph3 Production                           | MWheq    | 592,933   | 597,363   | 577,627   | 638,959   | 589,935   | 626,369   | 6         | 3,37.     | 5 37      | 562,439   | 542,601   | 533,475   | 547,476   | 457,800   | 505,463   |
| Ph3 Water Index                          | m3/MWheq | 0.5624    | 0.5329    | 0.5615    | 0.3486    | 0.3853    |           | 0 0       | 859       | 0.        | .4169     | 0.3400    | 0.4639    | 0.4605    | 0.5275    | 0.4132    |
| GSPP11 Water Consumption                 | m3       | 137,574   | 152,910   | 187,819   | 155,979   | 1         | ر0,470    | 16: 9     | 015       | 172,533   | 147,352   | 172,654   | 171,372   | 182,465   | 190,997   | 184,899   |
| GSPP11 Production                        | MWheq    | 110,797   | 103 167   | 132,798   |           | 1. /8     | 2,833     | 127       | ارگر      | 137,252   | 141,968   | 140,512   | 139,229   | 141,166   | 135,120   | 131,895   |
| GSPP11 Water Index                       | m3/MWheq | 1.24      | 822       | 1.4       | 1.159     | 1 5       | 1935      | 1.2       | 1.2118    | 1.2571    | 1.0379    | 1.2287    | 1.2309    | 1.2926    | 1.4135    | 1.4019    |
| GHECO1 Water Consumption                 | m3       | 4,8       | 3,645     | 12 3      |           | 48 5      | 279       | 55,2      | 55,137    | 50,806    | 52,435    | 53,587    | 52,424    | 54,341    | 37,442    | 57,696    |
| GHECO1 Production                        | MWheq    |           | 0         | Q         | ,893      | 360,      | 492,526   | 478,780   | 489,429   | 7,569     | 0         | 0         | 416,014   | 485,043   | 477,286   | 310,675   |
| GHECO1 Water Index                       | m3/MWheq | N/A       | N/A       | l.        |           | 0.1351    | 0.1122    | 0.1153    | 0.1127    | 6.7128    | N/A       | N/A       | 0.1260    | 0.1120    | 0.0784    | 0.1857    |
| GIPP Water Consumption                   | m3       | 34,811    | 30,566    | 2,754     | 10,729    | 49,388    | 85,582    | 51,306    | 37,397    | 101,913   | 15,819    | 16,873    | 2,425     | 2,136     | 16,598    | 4,830     |
| GIPP Production                          | MWheq    | 29,222    |           | 53,348    | 3,134     | 38,104    | 79,460    | 37,995    | 30,522    | 96,151    | 11,054    | 16,696    | 0         | 1,317     | 8,830     | 16        |
| GIPP Water Index                         | m3/MWheq | 1.1913    | 1.4401    | 1.3638    | 3.4235    | 1.2961    | 1.0770    | 1.3503    | 1.2253    | 1.0599    | 1.4310    | 1.0106    | N/A       | 1.6220    | 1.8797    | 307.6433  |
| SRC Water Consumption                    | m3       | 12,427    | 20,572    | 13,899    | 17,411    | 8,970     | 83,555    | 217,918   | 305,654   | 132,396   | 1,310     | 1,200     | 1,867     | -372      | 10,164    | 35,265    |
| SRC Production                           | MWheq    | 0         | 0         | 0         | 0         | 0         | 45,133    | 147,775   | 218,445   | 74,168    | 0         | 0         | 0         | 0         | 0         | 19,363    |
| SRC Water Index                          | m3/MWheq | N/A       | N/A       | N/A       | N/A       | N/A       | 1.8513    | 1.4747    | 1.3992    | 1.7851    | N/A       | N/A       | N/A       | N/A       | N/A       | 1.8212    |
| RDF Water Consumption                    | m3       | 5,258     | 30,268    | 12,713    | 35,409    | 15,343    | 32,427    | 22,656    | 21,163    | 11,274    | 22,785    | 21,802    | 19,042    | 17,276    | 33,153    | 35,173    |
| RDF Production                           | MWheq    | 169       | 4,260     | 4,710     | 5,010     | 2,143     | 4,961     | 3,573     | 3,908     | 1,708     | 4,454     | 4,398     | 3,306     | 2,590     | 5,509     | 5,766     |
| RDF Water Index                          | m3/MWheq | 31.0977   | 7.1055    | 2.6991    | 7.0671    | 7.1590    | 6.5361    | 6.3409    | 5.4157    | 6.6018    | 5.1155    | 4.9574    | 5.7605    | 6.6696    | 6.0176    | 6.0997    |
| Glow Energy Solar Farm Water Consumption | m3       | 75        | 62        | 75        | 109       | 247       | 159       | 174       | 164       | 95        | 8         | 7         | 17        | 26        | 24        | 15        |
| Glow Energy Solar Farm Production        | MWheq    | 155       | 182       | 203       | 191       | 202       | 210       | 222       | 159       | 167       | 139       | 178       | 141       | 163       | 190       | 198       |
| Glow Energy Solar Farm Water Index       | m3/MWheq | 0.4832    | 0.3407    | 0.3703    | 0.5719    | 1.2206    | 0.7569    | 0.7835    | 1.0338    | 0.5698    | 0.0575    | 0.0392    | 0.1206    | 0.1597    | 0.1264    | 0.0758    |
| Total Water Consumption                  | m3       | 940,422   | 931,260   | 990,503   | 909,108   | 895,897   | 1,078,366 | 1,047,893 | 1,160,674 | 1,105,560 | 815,537   | 782,351   | 872,963   | 945,034   | 1,058,236 | 1,064,934 |
| Total Production                         | MWheq    | 1,237,940 | 1,177,765 | 1,266,572 | 1,621,796 | 1,572,434 | 1,846,926 | 1,920,315 | 2,000,749 | 1,402,546 | 1,276,037 | 1,256,467 | 1,616,712 | 1,675,321 | 1,564,395 | 1,497,654 |
| Total Water Index                        | m3/MWheq | 0.7597    | 0.7907    | 0.7820    | 0.5606    | 0.5698    | 0.5839    | 0.5457    | 0.5801    | 0.7883    | 0.6391    | 0.6227    | 0.5400    | 0.5641    | 0.6765    | 0.7111    |

Example of water efficiency monitoring report (water consumption per MWh production)





Example of water use assessment by plants





#### Water Management outside GPSC



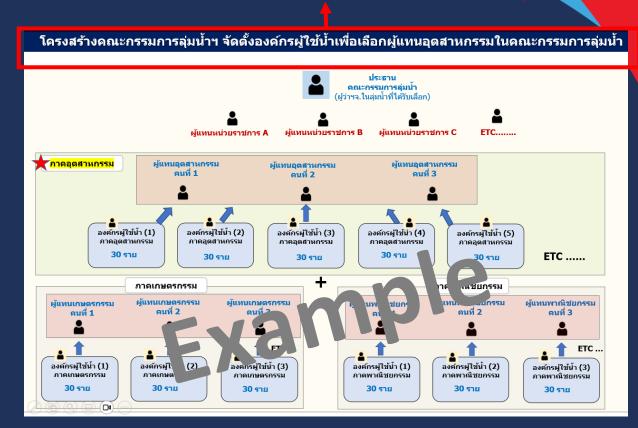
Example of GPSC's Representation in PTT Group Water Management Task Force

In addition to site-level water assessments, GPSC also contributes to PTT Group's strategic water risk management through the development of the Self-Rely / Water Secure Portion indicator in 2024. This metric evaluates the proportion of water sources that are under direct control of the Group, including: Desalinated water from seawater

- Water from 3Rs initiatives (Reduce, Reuse, Recycle)
- **Backup surface water reserves**
- **Groundwater sources**

This indicator is applied in both **normal operations and crisis** scenarios, helping GPSC and PTT Group enhance long-term water security and reduce reliance on public water supply.




GPSC also demonstrates its commitment to responsible water governance by registering as a certified water user organization under Thailand's Water Resources Act B.E. 2561 (2018). Through this participation, GPSC contributes to basin-level water planning and is eligible to engage in key activities such as: Reviewing water allocation priorities, Participating in drought and flood risk planning, Contributing to basin-level master plans, Recommending cross-basin water transfer decisions to the National Water Resources Committee This role complements GPSC's internal assessments and further strengthens its position as a responsible industrial water user in Thailand's evolving water resource management framework.



#### Water Management outside GPSC

GPSC manages external water by actively participating in the PTT Group Water Management Task Force, which holds meetings on water situations from the survey and analysis of the water situation model, and consequently formulates a water management plan, guidelines for monitoring water management targets, risk reduction, and assessment of impacts of water use in all operating areas. We finally communicate with responsible business units for efficient implementation of plans. The PTT Group Water Management Task Force also participates in the Water Management Working Group of the Eastern Region of Rayong. The working group, made up of governmental agencies and representatives of the private sector, monitors, assesses, analyzes the water situation and maps out measures to promptly reduce risks and impacts.

GPSC also leverages the Aqueduct Water Risk Atlas of the World Resources Institute (WRI) to identify water stress areas and determine the guidelines for the management of water sources outside all operating areas.



Example of GPSC's Representation in Water management Outside GPSC



### Actions to reduce water consumption

Following the water use assessment to pinpoint areas for reduction, GPSC prioritizes water management approaches across the operations and offices. This approach includes all measures focused on reducing the amount of water required for business activities and operations regarding equipment, systems or processes at facility/site level to those concerning employees/staff in office functions.

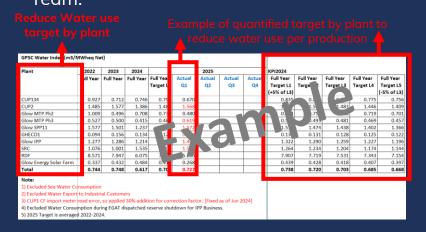
The water management performance of all operations and offices is closely monitored to ensure ongoing effectiveness. The below table shows water management approaches in operations and office services.

| INPUT                                               | ACTIVITY                                                                                                                                                                        | WASTEWATER<br>GENERATED                                                        | MANAGEMENT APPROACH                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water from outside suppliers                        | <ul><li>Cooling process</li><li>Steam</li></ul>                                                                                                                                 | Sea water through     a "Once through     sealing system"                      | Regular inspection of the seawater pumping point to<br>ensure the seawater pumping equipment and the                                                                                                                                                                                                                                                                                       |
| Water from natural<br>sources, such as sea<br>water | <ul> <li>production</li> <li>process</li> <li>Mineral water</li> <li>production</li> <li>system</li> <li>Condensate</li> <li>water quality</li> <li>improvement unit</li> </ul> | <ul><li>cooling system"</li><li>Wastewater from production processes</li></ul> | <ul> <li>aquaculture net to be in good working order.</li> <li>Reuse the effluent from the sludge dewatering system directly.</li> <li>Reuse wastewater (RO Reject) in the industrial water production system.</li> <li>Water from the coal yard and other wastewater are treated and collected in the pond before being recycled to spray onto coal piles to remove coal dust.</li> </ul> |
| Tap water                                           | Office services                                                                                                                                                                 | <ul> <li>Graywater and<br/>blackwater</li> </ul>                               | <ul> <li>3Rs (Reduce, Reuse, Recycle)</li> <li>Monitor and fix leaks</li> <li>Encouraging and training for water-conscious behavior</li> </ul>                                                                                                                                                                                                                                             |



## Actions to improve wastewater quality

GPSC emphasizes wastewater quality before discharging into water basis to comply with relevant regulations and avoid conflict with stakeholders. There are various measures implemented at facility level to improve the quality of wastewater/discharge water at the source (e.g., process improvements) and to monitor effluent (periodic sampling).


The wastewater quality of all operations and offices is closely monitored. The below table shows water management approaches in operations and office services.

| INPUT                                               | ACTIVITY                                                                                                                                                                        | WASTEWATER<br>GENERATED                                                        | MANAGEMENT APPROACH                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water from outside suppliers                        | <ul><li>Cooling process</li><li>Steam</li></ul>                                                                                                                                 | Sea water through     a "Once through     sealing system"                      | • Install a device to measure the temperature and residual                                                                                                                                                                                                                                                            |
| Water from natural<br>sources, such as sea<br>waste | <ul> <li>production</li> <li>process</li> <li>Mineral water</li> <li>production</li> <li>system</li> <li>Condensate</li> <li>water quality</li> <li>improvement unit</li> </ul> | <ul><li>cooling system"</li><li>Wastewater from production processes</li></ul> | <ul> <li>Install a device to measure the temperature and residual chlorine of sea water after cooling to be careful not to exceed the standard of wastewater from the production process.</li> <li>Treat to achieve standard values and pass the criteria to then release back into natural water sources.</li> </ul> |
| Tap water                                           | Office services                                                                                                                                                                 | <ul> <li>Graywater and<br/>blackwater</li> </ul>                               | <ul> <li>Install grease traps</li> <li>Promote employee awareness</li> <li>Monitor and maintain the wastewater treatment system</li> </ul>                                                                                                                                                                            |



### Establishment of targets to reduce water use

GPSC has established specific, measurable, and time-bound targets to reduce water use at both the company and plant levels. For example, 5.00% Water Saving of Normal Daily Water Consumption for MTP Area. These targets were derived based on peer benchmarking, operational data, and cost/stakeholder analysis. Progress is monitored quarterly through GPSC's water efficiency dashboard. All targets and progress are integrated into GPSC's environmental KPIs and reported to the Water Management Working Team.



Example of water use assessment by plants

 In setting its water efficiency targets, **GPSC** follows a structured process:

- 1. Identify high-potential sites where operational characteristics indicate significant opportunities for water reduction.
- 2. Set quantifiable targets for each selected site, aligned with industry benchmarks and GPSC's long-term water strategy.
- 3. Monitor monthly progress through a digital dashboard and site-level performance reports, with oversight by the Water Management Working Team. This process ensures that water reduction efforts are data-driven, prioritized, and continually improved over time.



## Application of water recycling

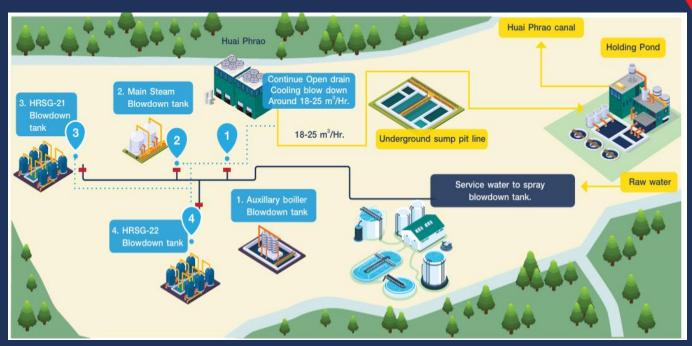
Water Recycling Initiative: Cooling Return Line Installation for Main Steam Blowdown Tank

**Project Name:** Install Line Cooling Return for Water Spray – Main Blowdown Tank (Efficiency Uplift)

Location: Central Utility Plant 2 (CUP2), GPSC

#### **Objective:**

To reduce the use of service water by redirecting cooling water return to lower the temperature of the main steam blowdown tank prior to discharge into the underground sump pit. This initiative enhances water efficiency, reduces freshwater dependency, and supports GPSC's water crisis mitigation program.


#### **Action Taken:**

A new pipeline was installed to **tie in cooling water return** in place of service water for temperature control at the blowdown tank. The system was applied across three areas:

- Main blowdown: 5 m³/h saving
- AB21 blowdown: 3 m³/h saving
- HRSG blowdown: 10 m³/h saving

#### **Project Highlights (CUP2):**

- Water Saved:  $18 \text{ m}^3/\text{hour} \rightarrow 157,680 \text{ m}^3/\text{year}$
- **Electricity Saved:** 0.589 kW → THB 22,659/year
- Total Cost Savings: THB 3.48 million/year
- CO<sub>2</sub> Reduction: 1,017 kg/year
- Investment Cost: THB 1.3 million
- Payback Period: 0.4 years



Example of Cooling Water Return System and Blowdown Tank Configuration at CUP2



# Awareness training provided to employees on water efficiency management programs

In 2024, GPSC promoted employee awareness on water efficiency through both online and on-site knowledge-sharing events.

In May, GPSC joined the "One on One Online Sharing: Strengthen Water Efficiency," where GC experts provided technical knowledge on increasing cooling water cycles and reducing blowdown through advanced water chemistry controls.





Additionally, in September, GPSC employees participated in the "CoP #1/2567: Cooling Tower Optimization and Recent Technology" held on-site at NPC S&E in Rayong. The event featured industry experts and cooling tower solution providers who shared best practices and recent innovations in optimizing cooling tower performance, reducing energy use, and minimizing water loss.

These programs strengthen GPSC's technical capacity and promote the practical implementation of water-saving solutions across operations, in alignment with the company's water efficiency strategy.

### **THANK YOU**

